Pythagoras sætning - Hvad er det, definition og koncept

Pythagoras sætning er en regel, der er opfyldt i tilfælde af en ret trekant, hvor summen af ​​hvert ben i kvadrat er lig med hypotenusen i kvadrat.

Vi skal tage i betragtning, at denne lov kun er opfyldt for en meget bestemt type trekant, den rigtige trekant, som er en, hvor to af de tre sider, der kaldes ben, danner en ret vinkel, det vil sige de måler 90 °.

Vi kan observere den pythagoriske sætning i følgende formel, hvor AB og BC er benene og AC er hypotenusen i trekanten vist i nedenstående graf.

AB2+ F.Kr.2= AC2

Så den Pythagoras sætning giver os mulighed for at beregne længden af ​​en af ​​siderne af trekanten, når vi kender de to andre. Også ved at kende længderne på alle siderne kan vi kontrollere uden en trekant, at det er rigtigt.

Det skal bemærkes, at vinkelmålingerne i den viste figur refererer. De kan have forskellige mål, men i alle trekanter generelt (ikke kun i rektangler) skal de indvendige vinkler altid være op til 180 °. Derfor, hvis man måler 90 °, skal summen af ​​de to andre nødvendigvis være 90 °.

Så under hensyntagen til ovenstående er en af ​​vinklerne i en ret trekant ret, og de to andre skal være akutte (mindre end 90 °).

Eksempel på anvendelse af Pythagoras sætning

Antag, at vi har en højre trekant, længden af ​​hypotenusen er 15 meter og den ene af dens ben er 10 meter. Hvor lang er det andet ben?

Så vi udvikler operationen:

152=102+ x2

225 = 100 + x2

x2=125

x = 11.1803 meter

Lad os se på en anden øvelse. Du kan fortælle os, at du har en trekant, hvis sider er 8, 11 og 14 meter. Kan det være en rigtig trekant?

82+112=64+121=185

142=196

185 ≠ 196

Derfor kan trekanten ikke være rigtig (på dette tidspunkt skal det bemærkes, at hypotenusen altid måler mere end benene).

Lad os som et tredje eksempel på anvendelse af denne sætning antages, at vi får at vide, at vi har en firkant, hvis sider er 12 meter. Hvad er længden af ​​dens diagonale?

I dette tilfælde skal vi huske, at de indvendige vinkler på et kvadrat måler 90º. Derfor, når vi tegner en diagonal, deler vi figuren i to højre trekanter (som det ses i nedenstående figur).

Så diagonalens (x) længde ville være:

122 + 122 = x2

144 + 144 = x2

x2 = 288

x = 16,9706 meter

Populære Indlæg

Kinas mest importerede produkter

I denne liste præsenterer vi listen over de ti mest importerede produkter fra Kina, hvor elektrisk udstyr vises i første position med 431,6 milliarder dollars og repræsenterer 25,7% af den samlede procentdel, efterfulgt af elektriske maskiner med 414,3 milliarder dollars og en procentdel på 26,1 %, og vi lukkede den tredje position med Læs mere…

Canadas mest eksporterede produkter

I denne liste præsenterer vi listen over de ti mest eksporterede produkter fra Canada, hvor køretøjer optræder i første position med 64,3 milliarder dollars og repræsenterer 16,5% af den samlede procentdel, efterfulgt af en vis afstand med køretøjer med 62, 3 milliarder dollars og en procentdel på 16,0%, og vi lukkede tredjepladsenLæs mere…

Storbritanniens mest eksporterede produkter

I denne liste præsenterer vi listen over de ti mest eksporterede produkter fra Storbritannien, hvor computere vises i første position med 60,3 milliarder dollars og repræsenterer 14,7% af den samlede procentdel, efterfulgt af en vis afstand af køretøjer med 51,7% milliarder dollars og en procentdel på 12,6%, og vi lukkede den tredjeLæs mere…

Chiles mest eksporterede produkter

I denne liste viser vi listen over de ti mest eksporterede produkter fra Chile, hvor kobber vises i første position med 15,2 milliarder dollars og repræsenterer 26,4% af den samlede procentdel, tæt fulgt af mineraler med 13, 3 milliarder dollars og en procentdel af 23,1%, og vi lukkede tredjepladsen med Læs mere…